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Abstract. A study is provided of the transmission of a three-dimensional electromagnetic X-wave
undergoing frustrated total internal reflection on the upper surface of a multi-layered structure. The
stratified structure consists of successive layers alternately allowing the transmission of evanescent
and free-propagation components. It is shown that the peak of an X-wave is transmitted through
these successive layers at an ultra-fast speed. Under certain conditions, the total traversal time
through all successive evanescent and free-propagation sections appears to be less than zero. The
peak of the transmitted pulse emerges from the stack before the incident peak reaches the front
surface of the stratified structure. Conditions for the materialization of this ultra-fast multiple
tunnelling of pulses are pointed out and their consequences and limitations are discussed.

(Some figures in this article are in colour only in the electronic version; see www.iop.org)

1. Introduction

It has been demonstrated that classical electromagnetic pulses undergoing frustrated total
internal reflection are partially transmitted through a single slab at ultra-fast speeds that appear
to be superluminal [1–4]. This situation is similar to other cases pertaining to the transmission
of pulses through undersized sections of waveguides or to photonic tunnelling through dielectric
mirrors [5–20]. It is also analogous to results related to the Hartman effect predicted from
solutions to Schrödinger’s equation within the context of quantum tunnelling [21]. In the
aforementioned situations, the traversal time associated with the transmission of the peak of
the pulse through the barrier region saturates to a constant value as the thickness of the barrier
increases [5–7, 21]. This causes the speed of the pulse tunnelling through the barrier to appear
to be superluminal. Energy flow analysis has indicated that the peak of the transmitted pulse
is not causally related to that of the incident one. Contributions to the peak of the tunnelled
field arise primarily from the leading portion of the incident pulse [5, 6]. Consequently, the
transmitted peak emerges from this leading portion of the field, which is not directly related to
the portion containing the peak of the incident pulse. This reshaping of the field of the pulse
is the reason for the apparent superluminal propagation through the tunnelling region.

There have been recent reports on the transmission of pulses through two barriers separated
by a free-propagation region. In addition to the usual saturation of the traversal times in the two
barrier regions, it has been shown that the traversal times of the pulses are also independent
of the length of the free-propagation region separating them [22, 23]. This unanticipated
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result leads to swift pulse transmissions that can be much faster than the speed of light. The
aforementioned results are based on the simulation of the transmission of pulses through
two undersized sections of a waveguide [22]. The predicted ultra-fast multiple tunnelling
requires that the waveguide sections contain weak precursory fields before the arrival of the
peak of the pulse. Another study of tunnelling through two successive barriers deals with the
one-dimensional Schrödinger equation. In this case, ultra-fast multiple tunnelling has been
confirmed by evaluating the phase time associated with deep barrier penetration [23]. The aim
of this work is to demonstrate that three-dimensional X-waves [24–28] transmitted through
a multi-layered structure exhibit the aforementioned ultra-fast multiple-tunnelling effect. We
use this specific case to demonstrate the possible existence of limitations on the number of
barriers and the widths of the regions of free-propagation separating them.

In an earlier work, we have demonstrated that X-wave tunnelling can be achieved by
assigning angles of incidence to the spectral components of the pulse that are greater than
the critical angle [4]. Furthermore, we have shown that the peak of the tunnelling X-wave
appears to be transmitted through the slab at speeds greatly exceeding the speed of light. Our
investigation has demonstrated that transmitted pulses are enlarged when compared with the
incident ones [4]. In this work, we investigate the possibility of ultra-fast multiple tunnelling
for X-waves going through a stratified structure consisting of successive layers alternately
allowing the transmission of evanescent and free-propagation components. Using spectral
synthesis, a simple analytical solution is obtained for the tunnelling of a three-dimensional X-
wave through a stratified structure. In the current investigation, we are primarily interested in
the study of the time taken by the peak of an X-wave to tunnel through the entire structure. No
special attention is given to the reflected pulse or the fields generated inside the various layers.
The plan of this work is to solve for the field of an X-wave transmitted through a multi-layered
planar structure. This is done in section 2, where we consider the case of a normally incident
X-wave for which all the spectral components undergo frustrated total internal reflection. In
section 3, we present numerical simulations of different scenarios. The results and implications
of this work are discussed in section 4.

2. Analysis

Consider an X-wave normally incident on a multi-layered structure which is schematically
represented in figure 1. The apex angle of the conic surface defining the wavevectors
associated with the spectral plane-wave components of the X-wave is chosen such that
ξ > θc = sin−1(n2/n1), where ni = √

εi/ε0 is the refractive index of medium i = 1 or
2. For propagation along the positive z-direction, transverse electric (TE) polarization of
the plane-wave components of the X-wave is achieved by working with the following vector
Hertzian potential [29]:

��TE(�r, t) = �(�r, t)�uz. (1a)

The electric field intensity can be readily obtained, namely

�E(�r, t) = −Z �∇ × ∂ct ��TE(�r, t) (1b)

where Z = √
µ0/ε1, assuming that the medium is non-magnetic. For an X-wave normally

incident on the slab, the Hertzian potential is defined in terms of a fourfold Fourier superposition
as

�(i)(�r, t) =
∫
R1

d(ω/c1)

∫
R3

d3�k A(�k, ω) e−iωte+i(kxx+kyy+kzz)δ
(
(ω/c1)

2 − k2
x − k2

y − k2
z

)
(2a)
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Figure 1. An X-wave incident normally on the upper surface of a multi-layered structure having
n1 > n2.

where c1 = c0/n1 is the wave speed in region 1 and the spectral amplitude is given by

A(�k, ω) = 1

π
(ω/ω0)

µe−(ω/c1)aδ(kz − (ω/c1) cos ξ). (2b)

The integrations in equation (2a) can be carried out explicitly to give the µth-order scalar
X-wave solution; specifically,

�(i)(�r, t) = !(µ + 1)

(ω0/c1)µ
√(

ρ2 sin2 ξ + (a − i(z cos ξ − c1t))2
)µ+1

×F

(
µ + 1

2
,−µ

2
, 1,

ρ2 sin2 ξ

ρ2 sin2 ξ + (a − i(z cos ξ − c1t))2

)
. (3)

Here, F is the hypergeometric function [30]. For integer values µ = m. The above expression
assumes the following form:

�(i)(�r, t) = (ω0/c1)
−m∂ma

([
ρ2 sin2 ξ + (a − i(z cos ξ − c1t))

2
]−1/2)

.

To determine the Hertzian potential associated with the transmitted field, one has to
calculate the transmitted plane-wave components contributing to a Fourier superposition
similar to that given in equation (2a). Considering the multi-layered structure shown in
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figure 1, the spectral amplitudes of the incident and reflected fields in region 1 are related
to the transmitted amplitudes in region N through the following matrix relationship [31]:[

(A + R)

p1(A − R))

]
=

[
I11 I12

I21 I22

] [
T

pNT

]
(4)

where [I] is the matrix defining the transmission through the whole stratified structure and
is given by the product of the characteristic matrices associated with all intermediate layers;
specifically,

[I] = [I2][I3] · · · [IN−1]. (5)

The characteristic matrix for each layer is defined by

[Ii] =
[

cosβi −(i/pi) sin βi

ipi sin βi cosβi

]
(6a)

where

βi = (ω/c0)nihi cos θi (6b)

pi = ni cos θi . (6c)

Solving equation (4) to determine the transmitted amplitude in terms of the incident one, the
following transmission coefficient is deduced [31]:

t (�k, ω) = T

A
= 2p1

(I11 + I12pN)p1 + (I21 + I22pN)
. (7)

For an X-wave incident on a multi-layered structure, the values of βi and pi depend on the
refractive index and thickness of the ith layer in addition to the angle of incidence θi of the
spectral components of the X-wave. One should note that the transmission coefficient given
in equation (7) takes into consideration all the reflections inside the various layers. We choose
the spectral angle ξ given in equation (2a) such that all components of the X-wave undergo
total internal reflection when they pass from an optically denser layer to a less dense one. As
shown in figure 1, we choose all odd layers to have the same refractive index n1, while the
even ones have refractive indices equal to n2. For n1 > n2, an incident X-wave characterized
by the axicon angle ξ > sin−1(n2/n1) will undergo frustrated total internal reflections at the
upper surfaces of the even-indexed layers. In these regions, the spectral amplitudes of the X-
wave have evanescent z dependences. In the odd-indexed layers, we have propagating spectral
components characterized by the angle θi = ξ . Apart from the first and last regions, which
are presumed to be semi-infinite, all odd (even) layers have the same thickness h1 (h2). For
the stratified medium shown in figure 1, the βi and pi parameters given in equations (6a) and
(6c) acquire the following explicit values for the odd-indexed layers:

β2)+1 = (ω/c0)n1h1 cos ξ (8a)

p2)+1 = n1 cos ξ (8b)

for ) = 1, 2, 3, . . . , (N − 1)/2. As for the even-indexed layers, we have

β2) = i(ω/c0)n2h2

√
n2

12 sin2 ξ − 1 (8c)

p2) = in2

√
n2

12 sin2 ξ − 1 (8d)

where n12 = n1/n2. Finally, the first and last regions have

p1 = pN = n1 cos ξ. (8e)
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The Hertzian potential associated with the transmitted field acquires the following form:

�(t)(�r, t) =
∫
R1

d(ω/c1)

∫
R3

d3�k t (�k, ω)A(�k, ω)

×e−iωte+i(kxx+kyy+kz(z−d))δ
(
(ω/c1)

2 − k2
x − k2

y − k2
z

)
. (9)

The three integrations over d3�k are carried out analytically to give

�(t)(�r, t) =
∫ ∞

0
d(ω/c1)(ω/ω0)

µJ0((ω/c1)ρ sin ξ) e−(ω/c1)(a−i(z cos ξ−c1t))

×2p1e−i(ω/c1){((N−3)/2)h1+((N−1)/2)h2} cos ξ

I11p1 + I12p
2
1 + I21 + I22p1

. (10)

In the next section, this integration is evaluated numerically to illustrate the behaviour of an
X-wave tunnelling through a multi-layered structure. Specific examples are chosen to clarify
the reasons for the occurrence of the ultra-fast transmission and its limitations.

3. Numerical results

In this section, we carry out several simulations of the behaviour of the transmitted field under
various conditions. The aim of these simulations is to explain the phenomenon and to pinpoint
the advantages and limitations of ultra-fast transmission using multi-layered structures. In
particular, we would like to elucidate the differences between single- and multiple-barrier
superluminal tunnelling. We start by illustrating certain aspects of deep barrier penetration, in
particular, showing that the transmitted peak is generated before the incident pulse reaches
the upper surface of the multi-layered structure. We proceed to show how adding more
barriers can shift the peak of the pulse forward at the expense of decreasing its amplitude
and localization. Furthermore, the ultra-fast transmission is examined for cases involving
shallow barrier penetration. Finally, we present results pertaining to the effects of increasing
the widths of the regions of free-propagation separating the various barriers.

3.1. Deep barrier penetration

In a previous study, we have considered the case of an X-wave tunnelling through a single slab
[4]. Tunnelling was achieved by assigning angles of incidence for all spectral components of the
X-wave that are larger than the critical angle at the upper interface of the slab. In our previous
investigation, we have chosen to work with an incident X-wave having an ξ angle slightly larger
than θc. Tunnelling under such a condition is referred to as shallow barrier penetration. In such
a case, the position of the peak of the transmitted pulse zm shows a distinct forward shift relative
to the position z0 of the peak of an X-wave travelling without a barrier. For the parameter
values used in the aforementioned study, the forward shift ,1 = zm − z0 was slightly less but
almost equal to the width of the slab. This behaviour makes the peak of the pulse appear to
have travelled through the barrier at a superluminal speed. For deep barrier penetration, when
ξ � θc, the ultra-fast transmission through a single barrier is more conspicuous. Under this
condition, the forward shift ,1 = zm−z0 can be much larger than the width of the barrier. The
reason for this large forward displacement is that the peak of the transmitted pulse is formed
in the precursory small-amplitude part of the field of the X-wave before the principal peak
arrives at the barrier. This mechanism is very important for understanding the phenomenon of
ultra-fast multiple tunnelling.

Consider the case of an X-wave normally incident on a single slab, for which n1 = 3
and n2 = 1. The X-wave is characterized by the unusually large apex angle ξ = 85◦ and the
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Figure 2. Surface plot of the Hertzian potential of the incident X-wave evaluated at c1t =
−200 mm. The X-wave pulse has a = 0.2 mm, ξ = 85◦, µ = 0.25 and (ω0/c1) = 5000 m−1.

Figure 3. Surface plot of the Hertzian potential of the transmitted X-wave evaluated at c1t =
200 mm. The incident X-wave is the same one shown in figure 2. The slab width is h2 = 1 mm
and the refractive indices are n1 = 3 and n2 = 1.

parameter a = 0.2 mm. Note that having ξ � sin−1 n21 = 19.47◦ ensures that all the Fourier
plane-wave components of the X-wave undergo deep barrier penetration. As will be shown
later on, the exaggerated large value of ξ has been chosen to emphasize certain aspects related
to ultra-fast multiple tunnelling. In figure 2, a surface plot of the incident X-wave is provided
at ct = −200 mm. The pulse shown has a = 0.2 mm, ξ = 85◦, µ = 1

4 and (ω0/c1) = 1/a.
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Figure 4. The axial profiles of the Hertzian potential of the transmitted X-wave for h2 = 0 (full
curve) and h2 = 1 mm (broken curve). The two profiles were evaluated for an incident X-wave
having a = 0.2 mm, ξ = 85◦, µ = 0.25 and (ω0/c1) = 5000 m−1.

Unless explicitly stated that some parameter value has been changed, the X-wave shown in
figure 2 is the one used as the incident pulse in all examples considered in this section. In
figure 3, we display the pulse transmitted through a slab of width h2 = 1 mm. The figure
confirms the ‘fattening’ of the transmitted pulse as predicted in [4]. This ‘fattened’ pulse
propagates in region 3 without any further spreading out, i.e. the transmitted pulse retains its
non-dispersive character while propagating in region 3. Furthermore, one should note that
the peak of the pulse is shifted forward relative to the rest of its field. In order to clarify
this point, we compare in figure 4 plots of the axial profiles of the Hertzian potential of the
transmitted pulses for h2 = 0 and h2 = 1 mm. The former corresponds to the case of having
no slab or to that of an X-wave propagating freely in a medium having n1 = 3. As can be
seen from figure 4, the peak of the pulse transmitted through the slab is located in front of the
peak of the pulse travelling in free-space. This behaviour is due to the reshaping of the pulse
in the tunnelling region. The forward shift of the pulse transmitted through a single barrier
,1 = zm − z0 = 10.9 mm � h2. To have a feeling of how fast the peak of the X-wave is
transmitted through a single slab, we have plotted the difference (zm − z0) − h2 for different
values of h2. Figure 5 shows that the difference (zm − z0)− h2 acquires positive values and is
much larger than h2. This behaviour should be contrasted with cases having ξ slightly larger
than θc. For the latter, the difference (zm − z0) − h2 is negative and is much smaller than h2

[4]. Large positive values of (zm − z0)− h2 indicate that the forward shift is much larger than
the width of the barrier. Given that the speed of the peak of the pulse is constant outside the
barrier region, then the large forward shift means that an advanced pulse emerges into region 3
before the peak of the incident field reaches the barrier.

This advanced transmission of pulses due to deep barrier penetration begs the following
question: how would deep barrier penetration affect the transmission of an X-wave pulse
through two barriers separated by a distance h1? Common wisdom suggests that the tunnelling
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Figure 5. Plot of the difference (zm − z0) − h2 versus h2 for a pulse incident on a single barrier.
The incident X-wave has the following parameter values: a = 0.2 mm, ξ = 85◦, µ = 0.25 and
(ω0/c1) = 5000 m−1. The positions of the peaks are calculated at c1t = 200 mm.

pulse is initially transmitted into region 3, then it propagates to the second barrier and tunnels
through it, and finally a peak of the field emerges in region 5. For deep barrier penetration
there is a slight complication; specifically, the transmitted pulse emerges from the tunnelling
region before the peak of the incident field arrives at the first barrier. This happens when the
principal peak is at a distance ,1 − h2 from the barrier. In what follows, we use the name
advanced penetration length ()ap) to denote such distance. If the second barrier is separated
from the first one by a propagation free region of width less than )ap (i.e. h1 < ,1 − h2), then
the pulse emerging from layer 2 will be at a distance that produces another advanced pulse in
the region beyond the second barrier. The same effect can be reproduced ad infinitum, as more
barriers are placed in the path of the X-wave while maintaining the condition h1 < ,1 − h2.
Consequently, the speed of transmission of the peak of the original pulse going through the
whole stratified structure appears to be independent not only of the widths of the barriers, but
also of the distances of free-propagation separating them [22, 23].

3.2. Effects of increasing the number of barriers

For the stratified structure shown in figure 1, we calculate the axial envelope of the field
transmitted through a two-barrier structure having tunnelling regions of width equal to
h2 = 1 mm and that of the free-propagation layer equals h1 = 7 mm. In figure 6, we
display the incident and transmitted fields at t = −7 cos ξ mm. In the figure, we have not
shown the field reflected in region 1 because at this time instant the reflected field is negligibly
small. Furthermore, adding the reflected field is a complication that will not affect the point
illustrated by the figure. It is shown in figure 6 that the peak of the transmitted field exits
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Figure 6. Advanced barrier penetration. The transmitted peak is formed before the incident
pulse reaches the tunnelling structure. The incident X-wave has the same parameter values as
in figure 2. The dotted curve represents the transmitted field magnified tenfold. The tunnelling
structure consists of two barriers having widths h2 = 1 mm and separated by a region of free
propagation of width h1 = 7 mm. The refractive indices of the different layers are equal to n1 = 3
and n2 = 1. The fields are calculated at c1t = −7 cos ξ mm.

Table 1. Forward shifts for one-, two- and three-barrier structures.

ξ h2 (mm) h1 (mm) ,1 (mm) ,2 (mm) ,3 (mm) d1 (mm) d2 (mm) d3 (mm)

85◦ 1 7 10.90 34.421 58.515 1 9 17
75◦ 1 2 2.704 7.341 11.591 1 4 8
85◦ 2 — 19.505 — — 2 — —

1 7 — 34.421 — — 9 —
2
3 7 — — 43.6 — — 16

the multi-layered structure before the incident pulse reaches the upper surface of the stack.
This behaviour is responsible for the apparent superluminal transmission due to the multiple
tunnelling of the X-wave.

In what follows, we investigate the possibility of adding extra barriers in order to achieve
larger forward shifts. This is shown in figure 7, where the pulses transmitted from one, two and
three barriers are plotted. The incident X-wave is the one shown in figure 2, the widths of the
tunnelling regions equal h2 = 1 mm and those of the free-propagation layers are h1 = 7 mm.
Figure 7 shows that the pulses undergo distinct forward shifts as the number of barriers is
increased. However, the increase in the cumulative sum of the widths of the tunnelling regions
(2h2 or 3h2) results in a decrease of the amplitudes of the pulses and in the enlargement of their
sizes. The forward shifts in the peaks of the pulses transmitted through the three configurations
are denoted by ,n, where n = 1, 2, 3 indicates the number of barriers. The values of the
forward shifts ,n for the three configurations are given in table 1. In the same table, the dn
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Figure 7. The axial profiles of the Hertzian potentials of the transmitted pulses for one-, two-
and three-barrier configurations for which h2 = 1 mm and h1 = 7 mm. The three profiles were
evaluated at c1t = 200 mm and the incident X-wave is characterized by the parameter values
a = 0.2 mm, ξ = 85◦, µ = 0.25 and (ω0/c1) = 5000 m−1. The refractive indices of the different
layers are equal to n1 = 3 and n2 = 1.

values give the total width of the stratified structure for n = 1, 2, 3; i.e. the cumulative sum of
the widths of all evanescent and free-propagation layers. For example, structures containing
two or three barriers have d2 = h1 + 2h2 or d3 = 2h1 + 3h2, respectively. One should note
that we have chosen h1 to be less than )ap, where having h1 = 7 mm < (,1 − h2) = 9.9 mm
satisfies the condition for advanced transmission of the pulses. It can be seen from table 1 that
for a three-barrier structure, we have barrier widths h2 = 1 mm separated by free-propagation
layers each having h1 = 7 mm. The cumulative sum of the widths of the three tunnelling
regions is thus equal to D = 3h2 = 3 mm. For this case, the forward shift in the position of
the peak of the pulse equals ,3 = 58.51 mm. This value should be compared with the forward
shift of a single barrier having a width D = h2 = 3 mm. As can be deduced from the plot
provided in figure 5, the forward shift corresponding to the single barrier is ,1 ∼ 29 mm. This
comparison demonstrates unequivocally the effectiveness of multiple tunnelling in producing
large forward shifts in the peaks of the transmitted pulses. One should also note that for
multiple tunnelling, the forward shift of the transmitted pulse ,n is much larger than the total
width of the stratified structure dn. In fact, table 1 indicates that for ξ = 85◦, a structure
containing n barriers produces a forward shift having ,n > n,1 + dn.

3.3. Effects of shallow barrier penetration

To demonstrate the importance of deep barrier penetration on the phenomenon of ultra-fast
transmission, we have calculated the forward shifts for an X-wave having ξ = 75◦. The
envelopes of the axial fields for one-, two- and three-barrier configurations are shown in



Ultra-fast multiple tunnelling of electromagnetic X-waves 8569

Figure 8. The axial profiles of the Hertzian potentials of the transmitted pulses for one-, two-
and three-barrier configurations for which h2 = 1 mm and h1 = 2 mm. The three profiles were
evaluated at c1t = 200 mm and the incident X-wave is characterized by the parameter values
a = 0.2 mm, ξ = 75◦, µ = 0.25 and (ω0/c1) = 5000 m−1. The refractive indices of the different
layers are equal to n1 = 3 and n2 = 1.

figure 8. The stratified structure is chosen to have h2 = 1 and h1 = 2 mm. The refractive
indices of the different layers are n1 = 3 and n2 = 1. The values of the forward shifts ,n

and the total widths of the stratified structures dn are given in the second entry of table 1.
One should note that the Hertzian potentials of pulses transmitted through a larger number of
barriers show distinct forward shifts over pulses transmitted through a smaller number. For
ξ = 75◦, the enlargement in the size of a transmitted X-wave is less than that occurring for a
pulse having ξ = 85◦. Comparing the plots in figures 7 and 8, we see that the forward shifts for
the smaller ξ angle are diminished significantly. Nevertheless, ,3 = 11.59 mm is still larger
than the forward shift resulting from a single barrier of width 3 mm for which ,1 = 7.92 mm.
To appreciate the need for deep barrier penetration in order to achieve ultra-fast multiple
tunnelling, we provide plots of the difference zm − z0 − D as a function of ξ . The two plots
shown in figure 9 have tunnelling regions with equal cumulative widths. For a single barrier,
we have D = h2 = 1 mm, while for the two-barrier configuration the cumulative thickness of
the tunnelling regions is D = 2h2 = 1 mm. For the latter, the intermediate free-propagation
region has h1 = 3 mm. The figure shows that the two configurations have the same forward
shifts up to angles ξ < 55◦. For larger angles, greater shifts are progressively observed in the
position of the peak of the pulse transmitted through the two-barrier configuration.

3.4. Effects of increasing the widths of regions of free propagation

In this subsection, we would like to look at the case when the separations between the
barriers are larger than )ap, i.e. h1 > ,1 − h2. In figure 10, we display the axial envelopes
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Figure 9. The dependence of the forward shift in the peak of the transmitted pulses on the apex
angle ξ . For a single barrier h2 = 1 mm, while for the two-barrier configuration h2 = 0.5 and
h1 = 3 mm. The incident X-wave is characterized by the parameter values a = 0.2 mm, µ = 0.25
and (ω0/c1) = 5000 m−1.

of the Hertzian potentials of three pulses transmitted by an X-wave having ξ = 75◦

incident on a two-barrier stack for which h2 = 1 mm. The three plots are generated at
c1t = 200 mm for barrier separation distances h1 equal to 3, 6 and 60 mm. As can
be seen from the plots, small-amplitude oscillations are introduced as h1 becomes slightly
larger than )ap. The observed ringing is generated due to the back-and-forth bouncing of the
spectral components of the pulse in the intermediate region between the two barriers. For
larger h1 separations, spectral amplitudes tunnel through the second barrier after bouncing
several times in the intermediate region. These transmitted components interfere both
constructively and destructively causing the ringing in the transmitted field to become more
pronounced. If the separation between the two barriers becomes large enough, then most
spectral components interfere constructively to generate a train of delayed pulses. This can be
seen for h1 = 60 mm, where the separation between any two consecutive pulses equals
2h1, indicating that the delayed pulses have been transmitted after being bounced in the
intermediate region an integer number of times. Apart from the ringing introduced as h1

is enlarged, the increase in the forward shift of the pulse is limited. For the three separations
h1 = 3, 6 and 60 mm, the peak of the pulse acquires the forward shifts ,2 = 8.35, 8.96
and 8.31 mm, respectively. This establishes that the largest forward shift for the peak of
the tunnelling pulse is attained for barrier separation distances that are equal to )ap. For
values h1 > )ap, the forward shift for a given stratified structure saturates and does not vary
significantly. Therefore, the optimal configuration for ultra-fast multiple tunnelling is to use
barrier widths that produce forward shifts ,1 such that the separation distance between the
barriers h1 ∼ )ap.
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Figure 10. Profiles of the Hertzian potentials of pulses transmitted through a two-barrier
configuration. The width of the tunnelling region is the same for the three configurations, where
h2 = 1 mm. Plots are provided for separation distances h1 = 3, h1 = 6 and h1 = 60 mm. The
forward shifts in the three cases equal ,2 = 8.54, 8.96 and 8.31 mm. The incident X-waves have
the same parameter values as in figure 8 and the refractive indices of the different layers are equal
to n1 = 3 and n2 = 1.

3.5. Advantages of multiple-barrier tunnelling

One may argue that the forward shift due to multiple tunnelling can be obtained by tunnelling
through a single barrier of a larger width. For example, consider the case of the first entry
in table 1. For a two-barrier configuration with h2 = 1 and h1 = 7 mm, we obtain
,2 = 34.42 mm. The same forward shift can be obtained using a single barrier of width
h2 = 3.7 mm. The Hertzian potentials of the pulses transmitted through these one- and
two-barrier configurations are shown in figure 11. The wider tunnelling region of the single
barrier results in a larger decay in the amplitude of the transmitted pulse. Furthermore, the
pulse tunnelling through the two-barrier configuration is more localized. The plots shown
in figure 11 illustrate the main advantage of multiple tunnelling, which is producing a large
forward shift while transmitting a localized pulse that still has substantial amplitude. To
emphasize this point, we have evaluated the axial envelope of an X-wave Hertzian potential
transmitted through one-, two- and three-barrier configurations such that the cumulative width
D is the same in the three cases. As such, we have chosen h2 = 2, h2 = 1 and h2 = 2

3 mm for
one-, two- and three-barrier configurations, respectively. For the three cases, the cumulative
barrier width is thus equal to D = 2 mm. The axial envelopes of the Hertzian potentials of
the transmitted pulses are shown in figure 12. The plots demonstrate that the variations in the
widths of the pulses are negligible. At the same time, the differences in their amplitudes are
small. The forward shifts in the peaks of the pulses for the different configurations are supplied
in the third entry in table 1. It is clear from the table that the three-barrier shift ,3 = 43.6 mm
is significantly larger than ,1 = 19.50 mm for a single barrier. Our calculations thus indicate
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Figure 11. Two profiles of the Hertzian potentials of pulses transmitted through one- and two-
barrier configurations such that their peaks have equal forward shifts ,1 = ,2 = 34.4 mm. The
incident X-waves have the same parameter values as in figure 7. For the single barrier h2 = 3.7 mm,
while for the two-barrier configuration h2 = 1 and h1 = 7 mm.

that multiple tunnelling can produce large forward shifts in the position of the peak of the
pulse without sacrificing too much amplitude or localization. This is the main advantage of
the process of multiple tunnelling investigated in this work.

4. Concluding remarks

We have established that X-waves tunnelling through a stratified structure consisting of
multiple barriers exhibit extraordinary waveform shaping that introduces large forward shifts
in the peaks of the transmitted pulses. The peaks of the transmitted pulses appear to have
moved through the stratified structure at ultra-fast speeds greatly exceeding the speed of light.
Tunnelling is achieved by imposing the condition of total internal reflection on the Fourier
spectral components of the X-waves. This is accomplished by choosing the spectral axicon
angle ξ to be larger than the critical angle θc. It has been found that ultra-fast multiple tunnelling
is intimately related to deep barrier penetration. For X-waves, deep barrier penetration is
achieved when ξ � θc. Under such a condition, ultra-fast transmission through a single
barrier takes place because the peak of the transmitted pulse emerges from the tunnelling
region before the peak of the incident pulse reaches the barrier. Understanding this non-local
effect is essential when considering the phenomenon of ultra-fast tunnelling through a stack
of multiple barriers.

In this paper, we have shown that multiple tunnelling can produce large forward shifts
in the position of the peak of the transmitted pulse without losing too much amplitude or
localization. A single barrier producing the same forward shift transmits a less localized pulse
that suffers a larger decay in amplitude. The largest forward shift is obtained when the widths
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Figure 12. Profiles of the Hertzian potentials of pulses transmitted through one-, two- and three-
barrier configurations. The cumulative sum of the widths of the tunnelling regions is the same for
the three configurations, D = 2 mm. Specifically, h1 = 7 mm while h2 = 2, 1 and 2

3 mm for one,
two and three barriers, respectively. The incident X-waves have the same parameter values as in
figure 7.

of the free-propagation regions h1 are approximately equal to )ap = ,1 − h2. Combining the
condition h1 ∼ )ap with the deep penetration requirement ξ � θc, we can produce forward
shifts that are larger than the thickness of the whole stratified structure, i.e. larger than the
sum of all tunnelling and free-propagation regions. Consequently, it appears that tunnelling
through a stack consisting of many layers satisfying the condition h1 ∼ )ap should produce
substantial forward shifts over extended distances. The results of this work are quite general
and the same analysis is applicable to other pulses or beams whose spectral components have
wavevectors confined to conic surfaces, e.g. focus-wave modes and Bessel beams [32–36].
Optical sources capable of generating X-waves, as well as other similar wave fields, have
been reported [25, 35–38]. This makes it possible to test experimentally the predictions of the
analysis presented in this work. Experimental difficulties can arise, however, due to the large
ξ angle needed for the incident field and the finite size of the optical set-up.

Two factors limit the possibility of producing large forward shifts over extended distances.
First, one should note that increasing the number of layers enlarges the cumulative width D of
the tunnelling regions. A greater cumulative width introduces a larger decay in the amplitude of
the transmitted pulse and a significant enlargement of its size. The second limiting factor is that
the forward shift due to transmission through ann-barrier configuration saturates to a maximum
value (,n)max as the separation between the barriers becomes greater than )ap. When h1 is
increased further, ringing appears on the transmitted pulse due to multiple reflections occurring
in the free-propagation regions and no further increase in the forward shift is observed. These
two effects impose practical constraints on achieving large forward shifts by tunnelling through
a stratified medium. Since we are limited to separation distances satisfying the condition
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h1 ∼ )ap, any effective increase in the width of the stratified structure requires the addition
of a large number of tunnelling layers. The latter causes the transmitted pulse to suffer larger
amplitude loss and to become less localized. At this stage, the aforementioned limitations apply
mainly to X-waves tunnelling through multi-layered planar structures. We cannot claim that
the same factors are effective in other cases of interest, such as tunnelling through successive
undersized sections in a waveguide filled with a precursory field [22]. Furthermore, the limiting
factors pointed out here do not diminish the importance of the significant forward shift produced
by multiple tunnelling.

At this stage, we would like to comment briefly on the origin of the superluminality
of X-waves. It is well established that the speed of the peak of an X-wave travelling
in free space is superluminal [24–27]. The parameters chosen in the examples used in
section 3 give the following values for the velocity of the peak of the incident pulse:
v1 = c0/(n1 cos ξ) = 1.288c0 for ξ = 75◦ and v1 = 3.825c0 for 85◦. The superluminality
of the peaks of the X-waves arise from the interference of plane waves propagating along
wavevectors lying on a conical surface [28]. The plane-wave components of the X-wave
travel at the speed of light while the speed of their interference peak is superluminal. This
superluminal speed is directly related to the apex angle of the cone. For multiple tunnelling,
the position of the peak of the pulse is determined by the Fourier spectral components of the
pulse interfering in the vicinity of the stratified structure. The transmitted peak appears to
have moved through a distance larger than the thickness of the whole stack in zero time.
Consequently, any estimate of the speed of transmission through the stratified structure
would be much larger than the 1.288c0 and 3.825c0 values acquired initially by the incident
pulse.

The results of this work confirm the established fact that the transmitted peak is created
in a portion of the field that is different from that containing the incident peak. Nevertheless,
the pulse would not have been transmitted in the first place if the extended field of the X-wave
did not contain the incident peak. If the incident field contains two peaks, then the transmitted
field produces two peaks. As such the incident pulses cause the transmitted peaks, although
the two portions of the field are not causally related in the usual sense of special relativity. This
classical non-local causality is similar to non-local phenomena arising within the context of
quantum mechanics, e.g. the EPR paradox, non-locality of correlated states and single-particle
interference effects. This point needs further study; specifically, one has to consider the effect
of the enlargement of the sizes of the transmitted pulses on the possible loss of information
incorporated in a sequence of incident pulses.

Finally, we would like to stress that this work is far from being exhaustive and that several
unclear issues need to be explained in future studies. Mainly, we should understand the details
of the temporal build-up of evanescent and propagation fields in the intermediate regions.
We have to provide answers to a number of key questions before claiming to have a full
understanding of the phenomenon. For example, while maintaining the condition h1 ∼ )ap,
does a tunnelling pulse treat the stratified structure as a single barrier and tunnels, in one shot,
through the whole structure? Or, alternatively, do secondary peaks emerge at the various free-
propagation sections simultaneously and subsequently each one of them tunnels through the
succeeding barrier? Another point that needs to be clarified is how the evanescent fields inside
the tunnelling regions mediate the transmission of pulses prior to the arrival of the original
peaks at the barrier. Other studies should deal with the effect of tunnelling through structures
with varying barrier widths. The possibility of limiting the enlargement of the sizes of the
transmitted pulses using graded structures can be of interest in applications concerned with
the transfer of information.
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